Faster Convex Optimization: Simulated Annealing with an Efficient Universal Barrier

Jacob Abernethy, Elad Hazan

July 20, 2016

Outline

A Simulated Annealing

- Physical interpretation
- 2 General framework for discrete problems
- 3 Extension to convex optimization
- 4 Hit-and-run-algorithm

Outline

- A Simulated Annealing
 - Physical interpretation
 - 2 General framework for discrete problems
 - 3 Extension to convex optimization
 - 4 Hit-and-run-algorithm
- B Interior-points method
 - Basics
 - 2 Entropic barrier

Outline

A Simulated Annealing

- Physical interpretation
- 2 General framework for discrete problems
- 3 Extension to convex optimization
- 4 Hit-and-run-algorithm

B Interior-points method

- Basics
- 2 Entropic barrier

C Results

- 1 Improved simulated annealing
- 2 Consequences

Spoiler

Central path (Entropic barrier) = $\mathbb{E}[Simulated Annealing]$

Annealing: heating then (slowly) cooling a material to increase its ductility and reduce its hardness.

Steels with high ductility, low hardness: Typical when the molecular structure has **low potential energy**

Figure: (a) Initial state (stable). (b) After annealing

Idea of annealing:

- 1 Take some material, like steel
- 2 Heat the material at high temperature
- 3 Cool down slowly the material
- 4 ????
- 5 Profit!

Idea of annealing:

- 1 Take some material, like steel
- 2 Heat the material at high temperature
- Cool down slowly the material
- 4 ????
- 5 Profit!

Why does it works?

Boltzmann distribution

$$P({\rm state\ transition}) \propto e^{-\frac{E({\rm State})}{T}}$$

Where

- lacksquare E is the energy of the next state
- lacksquare T is the temperature

Boltzmann distribution

$$P({\rm state\ transition}) \propto e^{-\frac{E({\rm State})}{T}}$$

Recall: minimizing energy

- High T: Can jump to high-energy state more easily
- Low T: Tend to be greedy (more weight for low E)

Boltzmann distribution

$$P(\text{state transition}) \propto e^{-\frac{E(\text{State})}{T}}$$

Recall: minimizing energy

- High T: Can jump to high-energy state more easily
- **Low** T: Tend to be greedy (more weight for low E)

Simulated annealing for discrete problems: Set state = x and E(state) = f(x). At iteration k,

- 1 Choose a temperature t_k
- f 2 Define a (small) set of neighbors $\cal S$
- Sample a point x in S where $P(x=x_i) = \frac{\exp(-f(x_i)/t_k)}{\sum_j \exp(-f(x_j)/t_k)}$

Simulated annealing for continuous convex problem

General formulation, for \mathcal{X} convex.

$$\min_{x \in \mathbb{R}^n} \quad c^T x$$

$$s.t. \quad x \in \mathcal{X}$$

Assume $\|\mathcal{X}\|_2 < R$. Let $c_k = \frac{c}{t_k}$.

Simulated annealing for continuous convex problem

General formulation, for \mathcal{X} convex.

$$\min_{x \in \mathbb{R}^n} \quad c^T x \\
s.t. \quad x \in \mathcal{X}$$

Assume $\|\mathcal{X}\|_2 < R$. Let $c_k = \frac{c}{t_k}$.

Boltzmann's distribution: $P_{c_k}(x) = \frac{\exp(-c_k^T x)}{\int_{\mathcal{X}} \exp(-c_k^T x) dx}$, but $\int_{\mathcal{X}} = \mathcal{O}(2^n)$ in general.

Approximation at point x_k : (Algorithm HitAndRun)

- **1** Take random direction $u \sim \mathcal{N}(0, \Sigma_k)$, Σ_k is an estimate of the covariance matrix at x_k
- **2** Determine line segment $\ell_k = \{x_k + \alpha u_k, \ \alpha \in \mathbb{R}\} \cap \mathcal{X}$ (using line-search).
- **3** Sample a point x_{k+1} following $P_{c_k}(x)$ restricted to ℓ_k .

Algorithm SimulatedAnnealing using warm restart of HitAndRun: Use n+1 different paths,

- lacksquare One for the solution (x_k)
- \blacksquare The n others (y_k^j) are for estimating covariance Σ_k

Algorithm SimulatedAnnealing using warm restart of HitAndRun: Use n+1 different paths,

- One for the solution (x_k)
- \blacksquare The n others (y_k^j) are for estimating covariance Σ_k

Algorithm SimulatedAnnealing (Kalai, Vempala [2006]):

- \blacksquare Temperature's law: $t_k = (1 \frac{1}{\sqrt{n}})^k R$, $c_k = \frac{c}{t_k}$
- $lacksquare x_{k+1} = ext{HitAndRun}(x_k, \Sigma_k, \mathcal{X}, c_k, N) \ (N = ext{HitAndRun iterations})$
- $\qquad \qquad \Sigma_{k+1} \text{ is estimated with } n \text{ vectors } y_{k+1}^j = \mathtt{HitAndRun}(y_k^j, \Sigma_k, \mathcal{X}, c_k, N)$
- Until $k = \mathcal{O}(\sqrt{n}\log(n/\epsilon))$ (required for ϵ -solution)

Algorithm SimulatedAnnealing using warm restart of HitAndRun: Use n+1 different paths,

- One for the solution (x_k)
- The n others (y_k^j) are for estimating covariance Σ_k

Algorithm SimulatedAnnealing (Kalai, Vempala [2006]):

- \blacksquare Temperature's law: $t_k = (1 \frac{1}{\sqrt{n}})^k R$, $c_k = \frac{c}{t_k}$
- $lacksquare x_{k+1} = \mathtt{HitAndRun}(x_k, \Sigma_k, \mathcal{X}, c_k, N) \; (N = \mathtt{HitAndRun} \; \mathsf{iterations})$
- $\qquad \qquad \Sigma_{k+1} \text{ is estimated with } n \text{ vectors } y_{k+1}^j = \mathtt{HitAndRun}(y_k^j, \Sigma_k, \mathcal{X}, c_k, N)$
- Until $k = \mathcal{O}(\sqrt{n}\log(n/\epsilon))$ (required for ϵ -solution)

Works only if $P_{c_k} \approx P_{c_{k+1}}$, satisfied if

- t decreases in $(1 \frac{1}{\sqrt{n}})^k$
- $N = \mathcal{O}(n^3)$

Complexity: $\sqrt{n}\log(n/\epsilon) \times n^3 \times n = \mathcal{O}(n^{4.5}\log(n))$

Interior-points method and barrier function

Idea: replace

$$\min_{x} \quad c^{T} x \\
s.t. \quad x \in \mathcal{X}$$

by successive approximations x_k solving (with Newton's method)

$$\min_{x} \beta_k c^T x + F(x) \quad , \qquad \beta_k = \left(1 + \frac{1}{\sqrt{\mu}}\right)^k$$

Complexity: $\mathcal{O}(\sqrt{\nu}\log(\nu/\epsilon)) \times \mathcal{O}(n^3)$.

Remark: Works only if β_k grows slowly

Universal barrier for convex sets

Interior point methods work using self-concordant barrier for set \mathcal{X} .

Self-concordant function: A nice function for Newton's method.

Theorem (Bubeck, Eldan [2014]): The function $u_{\mathcal{K}}^*$ is a self-concordant barrier for the convex set \mathcal{K} , with parameter $\nu = n(1 + o(1))$:

$$u_{\mathcal{K}}^*(x) = \sup_{\theta \in \mathbb{R}^n} \theta^T x - u_{\mathcal{K}}(\theta)$$
 ; $u_{\mathcal{K}}(\theta) = \log \int_{y \in \mathcal{K}} \exp(\theta^T y) dy$

■ Central path: $\bigcup \arg \min \beta c^T x + u_{\mathcal{K}}^*(x)$

■ Heat path:
$$\bigcup_{x \in \mathbb{Z}} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$$

- Central path: $\bigcup_{x \in \mathcal{X}} \arg \min \beta c^T x + u_{\mathcal{K}}^*(x)$
- Heat path: $\bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $Arr P_c(x) = \exp(-c^T x A(c))$ Exponential family

- Central path: $\bigcup_{\alpha > 0} \arg \min \beta c^T x + u_{\mathcal{K}}^*(x)$
- Heat path: $\bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $P_c(x) = \exp(-c^T x A(c))$ Exponential family

Proof:

 $\mathbb{E}_{x \sim P_c}[x] = -\nabla A(c)$ Property from exponential family

- Central path: $\bigcup_{c>0} \arg\min \beta c^T x + u_{\mathcal{K}}^*(x)$
- $\blacksquare \text{ Heat path: } \bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $P_c(x) = \exp(-c^T x A(c))$ Exponential family

- $\mathbb{E}_{x \sim P_c}[x] = -\nabla A(c)$ Property from exponential family

- Central path: $\bigcup_{\beta>0} \arg\min \beta c^T x + u_{\mathcal{K}}^*(x)$
- $\blacksquare \text{ Heat path: } \bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $P_c(x) = \exp(-c^T x A(c))$ Exponential family

- $\mathbb{E}_{x \sim P_c}[x] = -\nabla A(c)$ Property from exponential family

- Central path: $\bigcup_{\beta>0} \arg\min \beta c^T x + u_{\mathcal{K}}^*(x)$
- lacksquare Heat path: $\bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $P_c(x) = \exp(-c^T x A(c))$ Exponential family

- $\mathbb{E}_{x \sim P_c}[x] = -\nabla A(c)$ Property from exponential family

- 4 We can show that $dom(A^*) = -\mathcal{X}$

- Central path: $\bigcup_{\beta>0} \arg\min \beta c^T x + u_{\mathcal{K}}^*(x)$
- $\blacksquare \text{ Heat path: } \bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $\blacksquare A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $Arr P_c(x) = \exp(-c^T x A(c))$ Exponential family

- $\mathbb{E}_{x \sim P_c}[x] = -\nabla A(c)$ Property from exponential family
- $\mathbf{Z} \nabla A(c) = -\arg\max_{x \in \mathsf{dom}(A^*)} \ c^T x A^*(x)$ Fenchel conjugate
- 4 We can show that $dom(A^*) = -\mathcal{X}$
- $\nabla A(c) = \arg\min_{x \in -\mathcal{X}} -c^T x + A^*(x)$

- Central path: $\bigcup_{\beta>0} \arg\min \beta c^T x + u_{\mathcal{K}}^*(x)$
- $\blacksquare \text{ Heat path: } \bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $Arr P_c(x) = \exp(-c^T x A(c))$ Exponential family

- $\mathbf{Z} \nabla A(c) = -\arg\max_{x \in \mathsf{dom}(A^*)} \ c^T x A^*(x)$ Fenchel conjugate
- 4 We can show that $dom(A^*) = -\mathcal{X}$
- $\nabla A(c) = \arg\min_{x \in -\mathcal{X}} -c^T x + A^*(x)$

- Central path: $\bigcup_{\beta>0} \arg\min \beta c^T x + u_{\mathcal{K}}^*(x)$
- $\blacksquare \text{ Heat path: } \bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $\blacksquare A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $Arr P_c(x) = \exp(-c^T x A(c))$ Exponential family

- $\mathbb{E}_{x \sim P_c}[x] = -\nabla A(c)$ Property from exponential family

- 4 We can show that $dom(A^*) = -\mathcal{X}$
- $\nabla A(c) = \arg\min_{x \in -\mathcal{X}} -c^T x + A^*(x)$
- $\text{ However } A^*(-x) = u_{\mathcal{X}}^*(x) \quad \Leftrightarrow A(x) = u_{\mathcal{X}}(-x)$

- Central path: $\bigcup_{\beta>0} \arg\min \beta c^T x + u_{\mathcal{K}}^*(x)$
- $\blacksquare \text{ Heat path: } \bigcup_{t>0} \mathbb{E}_{x \sim P_{c/t}(x)}[x]$

Idea: (assume
$$t = \beta = 1$$
)

- $\blacksquare A(c) = \log \int_{\mathcal{X}} \exp(-c^T y) dy$ Equal to $u_{\mathcal{X}}(-c)$
- $P_c(x) = \exp(-c^T x A(c))$ Exponential family

- **1** $\mathbb{E}_{x \sim P_c}[x] = -\nabla A(c)$ Property from exponential family

- 4 We can show that $dom(A^*) = -\mathcal{X}$

- However $A^*(-x) = u_{\mathcal{X}}^*(x) \Leftrightarrow A(x) = u_{\mathcal{X}}(-x)$
- 8 $\arg\min_{x\in\mathcal{X}} c^T x + u_{\mathcal{X}}^*(x) = \text{Central Path}$

Consequences for SimulatedAnnealing algorithm:

- New temperature schedule: $t_k = (1 \frac{1}{\sqrt{n}})^k \to t_k = (1 \frac{1}{\sqrt{\nu}})^k$
- New complexity: $\mathcal{O}(n^{4.5}) \to \mathcal{O}(\sqrt{\nu}n^4)$
- Randomized version of interior-point algorithms
 - Does not require the computation of the barrier
 - No gradient/Hessian needed
 - Higher complexity (factor of $\mathcal{O}(n)$)
 - Line-search for estimating ℓ_k
- Main assumption: oracle $x \in \mathcal{X}$ is cheap