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Spoiler

Central path (Entropic barrier) = E[Simulated Annealing]



Annealing: heating then (slowly) cooling a material to increase its ductility and
reduce its hardness.

Steels with high ductility, low hardness: Typical when the molecular structure has
low potential energy

(a) (b)

Figure: (a) Initial state (stable). (b) After annealing
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Why does it works?

Boltzmann distribution

o __ E(State)
P(state transition) occ e”~ T
Where
m F is the energy of the next state
m T is the temperature



Boltzmann distribution

a. E (State)
P(state transition) oce”— T

Recall: minimizing energy
m High T Can jump to high-energy state more easily
m Low T Tend to be greedy (more weight for low E)



Boltzmann distribution

a. E (State)
P(state transition) oce”— T

Recall: minimizing energy
m High T Can jump to high-energy state more easily
m Low T Tend to be greedy (more weight for low E)

Simulated annealing for discrete problems: Set state = = and E(state) = f(x).
At iteration &,

Choose a temperature ¢,
Define a (small) set of neighbors &

exp(—f(xi)/tk)
> exp(—f(x;)/tk)

Sample a point z in S where P(x = ;) =
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General formulation, for X' convex.

min ¢’
TER™
st. xeX
Assume [[X[]2 < R. Let cp = .
exp(—cl )

Boltzmann's distribution: P, (z) ,but [, =0(2") in
x

| B [y exp(—cfx)d
general.

Approximation at point z: (Algorithm HitAndRun)

Take random direction u ~ N'(0,3}), X is an estimate of the covariance
matrix at zj

Determine line segment ¢y, = {z) + aug, o € R} N X (using line-search).
Sample a point x4 following P, (x) restricted to /.
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m Temperature's law: ¢, = (1 — ﬁ)kR =1
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m Until & = O(y/nlog(n/e)) (required for e-solution)
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Algorithm SimulatedAnnealing (Kalai, Vempala [2006]):
m Temperature's law: ¢, = (1 — ﬁ)kR =1
m zj;1 = HitAndRun(zg, Xk, X, ¢k, N) (N = HitAndRun iterations)
m Y1 is estimated with n vectors yiﬂ = HitAndRun(yi, Yk, X, ek, N)
m Until & = O(y/nlog(n/e)) (required for e-solution)

Works only if P, ~ P,, . ,, satisfied if
m ¢ decreases in (1 — %)k

m N =0(n?

Complexity: /nlog(n/e) x n? x n = O(n*?log(n))



Fitness s

Possible states s



Interior-points method and barrier function

Idea: replace

min Lz

x

st. ze kX
by successive approximations x, solving (with Newton's method)

k
ngnﬂchx + F(;L') s ﬁk = (1 + \}’[7,)

Complexity: O (y/vlog(v/e)) x O(n3).

Remark: Works only if 85 grows slowly



10



Universal barrier for convex sets
Interior point methods work using self-concordant barrier for set X.
Self-concordant function: A nice function for Newton's method.

Theorem (Bubeck, Eldan [2014]): The function uj is a self-concordant barrier
for the convex set KC, with parameter v = n(1 + o(1)):

ui(x) = sup 0Tz —ux(0) 5 ux(0) =log / exp(67y)dy
yer
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Consequences for SimulatedAnnealing algorithm:

New temperature schedule: 1, = (1 — —=)" — tx = (1 -

New complexity: O(n*?) — O(y/vn?)
v=0(n)
Randomized version of interior-point algorithms

m Does not require the computation of the barrier
m No gradient/Hessian needed

m Higher complexity (factor of O(n))

m Line-search for estimating £

Main assumption: oracle z € X is cheap
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