
Faster Convex Optimization: Simulated Annealing with an
Efficient Universal Barrier

Jacob Abernethy, Elad Hazan

July 20, 2016



Outline

A Simulated Annealing
1 Physical interpretation
2 General framework for discrete problems
3 Extension to convex optimization
4 Hit-and-run-algorithm

B Interior-points method
1 Basics
2 Entropic barrier

C Results
1 Improved simulated annealing
2 Consequences

1



Outline

A Simulated Annealing
1 Physical interpretation
2 General framework for discrete problems
3 Extension to convex optimization
4 Hit-and-run-algorithm

B Interior-points method
1 Basics
2 Entropic barrier

C Results
1 Improved simulated annealing
2 Consequences

1



Outline

A Simulated Annealing
1 Physical interpretation
2 General framework for discrete problems
3 Extension to convex optimization
4 Hit-and-run-algorithm

B Interior-points method
1 Basics
2 Entropic barrier

C Results
1 Improved simulated annealing
2 Consequences

1



Spoiler

Central path (Entropic barrier) = E[Simulated Annealing]

2



Annealing: heating then (slowly) cooling a material to increase its ductility and
reduce its hardness.

Steels with high ductility, low hardness: Typical when the molecular structure has
low potential energy

Figure: (a) Initial state (stable). (b) After annealing

3



Idea of annealing:
1 Take some material, like steel
2 Heat the material at high temperature
3 Cool down slowly the material
4 ????
5 Profit!

Why does it works?

Boltzmann distribution

P (state transition) ∝ e−
E(State)

T

Where
E is the energy of the next state
T is the temperature

4



Idea of annealing:
1 Take some material, like steel
2 Heat the material at high temperature
3 Cool down slowly the material
4 ????
5 Profit!

Why does it works?

Boltzmann distribution

P (state transition) ∝ e−
E(State)

T

Where
E is the energy of the next state
T is the temperature

4



Boltzmann distribution

P (state transition) ∝ e−
E(State)

T

Recall: minimizing energy
High T : Can jump to high-energy state more easily
Low T : Tend to be greedy (more weight for low E)

Simulated annealing for discrete problems: Set state = x and E(state) = f(x).
At iteration k,

1 Choose a temperature tk
2 Define a (small) set of neighbors S

3 Sample a point x in S where P (x = xi) =
exp(−f(xi)/tk)∑
j exp(−f(xj)/tk)

5



Boltzmann distribution

P (state transition) ∝ e−
E(State)

T

Recall: minimizing energy
High T : Can jump to high-energy state more easily
Low T : Tend to be greedy (more weight for low E)

Simulated annealing for discrete problems: Set state = x and E(state) = f(x).
At iteration k,

1 Choose a temperature tk
2 Define a (small) set of neighbors S

3 Sample a point x in S where P (x = xi) =
exp(−f(xi)/tk)∑
j exp(−f(xj)/tk)

5



Simulated annealing for continuous convex problem

General formulation, for X convex.

min
x∈Rn

cTx

s.t. x ∈ X

Assume ‖X‖2 < R. Let ck = c
tk
.

Boltzmann’s distribution: Pck(x) =
exp(−cTk x)∫
X exp(−cTk x)dx

, but
∫
X = O(2n) in

general.

Approximation at point xk: (Algorithm HitAndRun)
1 Take random direction u ∼ N (0,Σk), Σk is an estimate of the covariance

matrix at xk
2 Determine line segment `k = {xk + αuk, α ∈ R} ∩ X (using line-search).
3 Sample a point xk+1 following Pck(x) restricted to `k.

6



Simulated annealing for continuous convex problem

General formulation, for X convex.

min
x∈Rn

cTx

s.t. x ∈ X

Assume ‖X‖2 < R. Let ck = c
tk
.

Boltzmann’s distribution: Pck(x) =
exp(−cTk x)∫
X exp(−cTk x)dx

, but
∫
X = O(2n) in

general.

Approximation at point xk: (Algorithm HitAndRun)
1 Take random direction u ∼ N (0,Σk), Σk is an estimate of the covariance

matrix at xk
2 Determine line segment `k = {xk + αuk, α ∈ R} ∩ X (using line-search).
3 Sample a point xk+1 following Pck(x) restricted to `k.

6



Algorithm SimulatedAnnealing using warm restart of HitAndRun:
Use n+ 1 different paths,

One for the solution (xk)

The n others (yjk) are for estimating covariance Σk

Algorithm SimulatedAnnealing (Kalai, Vempala [2006]):
Temperature’s law: tk = (1− 1√

n
)kR, ck = c

tk

xk+1 = HitAndRun(xk,Σk,X , ck, N) (N = HitAndRun iterations)
Σk+1 is estimated with n vectors yjk+1 = HitAndRun(yjk,Σk,X , ck, N)

Until k = O(
√
n log(n/ε)) (required for ε-solution)

Works only if Pck ≈ Pck+1
, satisfied if

t decreases in (1− 1√
n

)k

N = O(n3)

Complexity:
√
n log(n/ε)× n3 × n = O(n4.5 log(n))

7



Algorithm SimulatedAnnealing using warm restart of HitAndRun:
Use n+ 1 different paths,

One for the solution (xk)

The n others (yjk) are for estimating covariance Σk

Algorithm SimulatedAnnealing (Kalai, Vempala [2006]):
Temperature’s law: tk = (1− 1√

n
)kR, ck = c

tk

xk+1 = HitAndRun(xk,Σk,X , ck, N) (N = HitAndRun iterations)
Σk+1 is estimated with n vectors yjk+1 = HitAndRun(yjk,Σk,X , ck, N)

Until k = O(
√
n log(n/ε)) (required for ε-solution)

Works only if Pck ≈ Pck+1
, satisfied if

t decreases in (1− 1√
n

)k

N = O(n3)

Complexity:
√
n log(n/ε)× n3 × n = O(n4.5 log(n))

7



Algorithm SimulatedAnnealing using warm restart of HitAndRun:
Use n+ 1 different paths,

One for the solution (xk)

The n others (yjk) are for estimating covariance Σk

Algorithm SimulatedAnnealing (Kalai, Vempala [2006]):
Temperature’s law: tk = (1− 1√

n
)kR, ck = c

tk

xk+1 = HitAndRun(xk,Σk,X , ck, N) (N = HitAndRun iterations)
Σk+1 is estimated with n vectors yjk+1 = HitAndRun(yjk,Σk,X , ck, N)

Until k = O(
√
n log(n/ε)) (required for ε-solution)

Works only if Pck ≈ Pck+1
, satisfied if

t decreases in (1− 1√
n

)k

N = O(n3)

Complexity:
√
n log(n/ε)× n3 × n = O(n4.5 log(n))

7



8



Interior-points method and barrier function

Idea: replace

min
x

cTx

s.t. x ∈ X

by successive approximations xk solving (with Newton’s method)

min
x
βkc

Tx+ F (x) , βk =

(
1 +

1
√
µ

)k
Complexity: O (

√
ν log(ν/ε))×O(n3).

Remark: Works only if βk grows slowly

9



10



Universal barrier for convex sets

Interior point methods work using self-concordant barrier for set X .

Self-concordant function: A nice function for Newton’s method.

Theorem (Bubeck, Eldan [2014]): The function u∗K is a self-concordant barrier
for the convex set K, with parameter ν = n(1 + o(1)):

u∗K(x) = sup
θ∈Rn

θTx− uK(θ) ; uK(θ) = log

∫
y∈K

exp(θT y)dy

11



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc [x] = −∇A(c) Property from exponential family
2 −∇A(c) = − arg maxx∈dom(A∗) c

Tx−A∗(x) Fenchel conjugate
3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family

Proof:

1 Ex∼Pc [x] = −∇A(c) Property from exponential family
2 −∇A(c) = − arg maxx∈dom(A∗) c

Tx−A∗(x) Fenchel conjugate
3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc
[x] = −∇A(c) Property from exponential family

2 −∇A(c) = − arg maxx∈dom(A∗) c
Tx−A∗(x) Fenchel conjugate

3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc
[x] = −∇A(c) Property from exponential family

2 −∇A(c) = − arg maxx∈dom(A∗) c
Tx−A∗(x) Fenchel conjugate

3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc
[x] = −∇A(c) Property from exponential family

2 −∇A(c) = − arg maxx∈dom(A∗) c
Tx−A∗(x) Fenchel conjugate

3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc
[x] = −∇A(c) Property from exponential family

2 −∇A(c) = − arg maxx∈dom(A∗) c
Tx−A∗(x) Fenchel conjugate

3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X

5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc
[x] = −∇A(c) Property from exponential family

2 −∇A(c) = − arg maxx∈dom(A∗) c
Tx−A∗(x) Fenchel conjugate

3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc
[x] = −∇A(c) Property from exponential family

2 −∇A(c) = − arg maxx∈dom(A∗) c
Tx−A∗(x) Fenchel conjugate

3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc
[x] = −∇A(c) Property from exponential family

2 −∇A(c) = − arg maxx∈dom(A∗) c
Tx−A∗(x) Fenchel conjugate

3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path

12



Link between "Heat Path" and "Central Path"

Central path:
⋃
β>0

arg minβcTx+ u∗K(x)

Heat path:
⋃
t>0

Ex∼Pc/t(x)[x]

Idea: (assume t = β = 1)
A(c) = log

∫
X exp(−cT y)dy Equal to uX (−c)

Pc(x) = exp(−cTx−A(c)) Exponential family
Proof:

1 Ex∼Pc
[x] = −∇A(c) Property from exponential family

2 −∇A(c) = − arg maxx∈dom(A∗) c
Tx−A∗(x) Fenchel conjugate

3 −∇A(c) = arg minx∈dom(A∗) −cTx+A∗(x)

4 We can show that dom(A∗) = −X
5 ∇A(c) = arg minx∈−X −cTx+A∗(x)

6 ∇A(c) = arg minx∈X cTx+A∗(−x)

7 However A∗(−x) = u∗X (x) ⇔ A(x) = uX (−x)

8 arg minx∈X cTx+ u∗X (x) = Central Path
12



Consequences for SimulatedAnnealing algorithm:
New temperature schedule: tk = (1− 1√

n
)k → tk = (1− 1√

ν
)k

New complexity: O(n4.5) → O(
√
νn4)

ν = O(n)

Randomized version of interior-point algorithms
Does not require the computation of the barrier
No gradient/Hessian needed
Higher complexity (factor of O(n))
Line-search for estimating `k

Main assumption: oracle x ∈ X is cheap

13


